Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jens Beckmann,^a* Dainis Dakternieks,^a Andrew Duthie,^a Klaus Jurkschat^b and Markus Schürmann^b

^aCentre for Chiral and Molecular Technologies, Deakin University, Geelong, 3217, Victoria, Australia, and ^bLehrstuhl für Anorganische Chemie II, Universität Dortmund, D-44221 Dortmund, Germany

Correspondence e-mail: beckmann@deakin.edu.au

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.007 Å Disorder in main residue R factor = 0.025 wR factor = 0.044 Data-to-parameter ratio = 20.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Octabutyl- $1\kappa^2 C_{,2}\kappa^2 C_{,3}\kappa^2 C_{,4}\kappa^2 C_{,4}\kappa^2 C_{,4}\kappa^3 O_{,2}$ 1:2: $3\kappa^3 O_{,2}$:3: $4\kappa^2 O_{,4}\kappa^2 O_{,4}\kappa^2 O_{,4}\kappa^2 O_{,3}$ diphenoxy- $1\kappa O_{,4}\kappa O_{,4$

The dimeric title compound, tetrabutyldiphenoxydistannoxane, $[Sn_4(C_4H_9)_8(C_6H_5O)_4O_2]$, adopts a ladder-type structure, featuring an almost planar inorganic framework with three four-membered Sn_2O_2 rings and four coplanar phenoxy groups. Received 25 August 2004 Accepted 10 September 2004 Online 18 September 2004

Comment

The title compound, [Bu₂(PhO)SnOSn(OPh)Bu₂]₂, (I), was obtained by the condensation of dibutyltin oxide with phenol according to a literature procedure (Considine et al., 1963). The structure of (I) (Fig. 1 and Table 1) features an almost planar $Sn_4O_2(OPh)_4$ motif, the largest deviation from the mean plane being 0.072 (1) Å for Sn4. The four independent Sn atoms adopt a distorted trigonal bipyramidal geometry defined by SnC₂O₃ donor sets. The distortion is more pronounced at the exocyclic Sn atoms Sn1 and Sn4 than at the endocyclic atoms Sn2 and Sn3 [geometrical goodness $\Delta \Sigma(\theta)$: 77.8° for Sn1, 85.8° for Sn2, 85.3° for Sn3, and 78.7° for Sn4] (Kolb et al., 1994). The ¹¹⁹Sn MAS NMR spectrum of (I) shows two signals at δ_{iso} -175.8 (integral 56%) and -191.6 (integral 44%), which are assigned to the endocyclic and exocyclic Sn atoms, respectively. Despite being crystallographically inequivalent, the differences between Sn1 and Sn4 or Sn2 and Sn3 are apparently too marginal to be resolved by ¹¹⁹Sn MAS NMR spectroscopy. Overall, the structure of (I) closely those of many known resembles dimeric tetraorganodistannoxanes, as reviewed by Davies (2004).

Experimental

Compound (I) was prepared by the method of Considine *et al.* (1963) and recrystallized from dichloromethane/hexane (1:1, 1 g/20 ml) at room temperature.

Crystal data

 $[Sn_4(C_4H_9)_8(C_6H_5O)_4O_2]$ $M_r = 1336.06$ Mo $K\alpha$ radiation Monoclinic, P21 Cell parameters from 24855 a = 13.1456 (4) Åreflections b = 17.1448 (6) Å $\theta = 3.1-27.5^{\circ}$ c = 13.3802 (6) Å $\mu = 1.71 \text{ mm}^{-1}$ $\beta = 101.070 \ (2)^{\circ}$ T = 173 (2) K $V = 2959.50 (19) \text{ Å}^3$ Block, colourless $0.35 \times 0.25 \times 0.20$ mm Z = 2 $D_x = 1.499 \text{ Mg m}^{-3}$

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

12278 independent reflections

9730 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max}=27.5^\circ$

 $h = -16 \rightarrow 16$

 $k = -21 \rightarrow 22$

 $l = -17 \rightarrow 17$

 $w = 1/[\sigma^2(F_o^2)]$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}$

 $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

5263 Friedel pairs

Absolute structure: Flack (1983),

Flack parameter = 0.394 (14)

Data collection

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{min} = 0.562, T_{max} = 0.715$ 24855 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.044$ S = 0.8712278 reflections 613 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Sn1-C1	2.119 (4)	Sn3-C31	2.133 (4)
Sn1-C11	2.127 (4)	Sn3-C35	2.138 (4)
Sn1-O1	1.999 (2)	Sn3-O1	2.043 (2)
Sn1-O3	2.315 (2)	Sn3-O2	2.107 (2)
Sn1-O5	2.096 (2)	Sn3-O3	2.274 (2)
Sn2-C21	2.102 (5)	Sn4-C41	2.140 (4)
Sn2-C25	2.134 (4)	Sn4-C51	2.130 (4)
Sn2-O1	2.098 (2)	Sn4-O2	1.998 (2)
Sn2-O2	2.043 (2)	Sn4-O4	2.315 (2)
Sn2-O4	2.275 (2)	Sn4-O6	2.092 (2)
Sn1-O1-Sn3	120.25 (12)	O2-Sn2-O4	70.26 (9)
Sn1-O1-Sn2	131.61 (11)	O1-Sn2-O4	142.25 (9)
Sn3-O1-Sn2	108.08 (11)	C21-Sn2-O4	91.48 (15)
Sn4-O2-Sn2	120.09 (12)	C25-Sn2-O4	95.70 (14)
Sn4-O2-Sn3	131.74 (11)	O1-Sn3-O2	71.99 (9)
Sn2-O2-Sn3	107.75 (11)	O1-Sn3-C31	111.92 (12)
Sn3-O3-Sn1	99.60 (9)	O2-Sn3-C31	99.28 (13)
Sn2-O4-Sn4	99.44 (9)	O1-Sn3-C35	117.07 (13)
O1-Sn1-O5	78.00 (10)	O2-Sn3-C35	102.75 (14)
O1-Sn1-C1	113.85 (14)	C31-Sn3-C35	130.35 (15)
O5-Sn1-C1	103.18 (13)	O1-Sn3-O3	70.13 (9)
O1-Sn1-C11	116.19 (13)	O2-Sn3-O3	142.08 (8)
O5-Sn1-C11	99.28 (13)	C31-Sn3-O3	96.25 (13)
C1-Sn1-C11	128.22 (17)	C35-Sn3-O3	92.83 (14)
O1-Sn1-O3	70.01 (9)	O2-Sn4-O6	78.58 (9)
O5-Sn1-O3	148.00 (9)	O2-Sn4-C51	115.92 (14)
C1-Sn1-O3	89.25 (12)	O6-Sn4-C51	101.91 (13)
C11-Sn1-O3	95.57 (12)	O2-Sn4-C41	113.83 (13)
O2-Sn2-O1	72.17 (9)	O6-Sn4-C41	99.26 (13)
O2-Sn2-C21	114.97 (15)	C51-Sn4-C41	128.69 (17)
O1-Sn2-C21	101.10 (17)	O2-Sn4-O4	70.14 (9)
O2-Sn2-C25	109.63 (13)	O6-Sn4-O4	148.59 (9)
O1-Sn2-C25	100.05 (15)	C51-Sn4-O4	89.52 (12)
C21-Sn2-C25	134.59 (18)	C41-Sn4-O4	95.90 (12)

H atoms were placed in geometrically calculated positions and refined using a riding model (C–H_{prim.} 0.96 Å, C–H_{sec.} 0.97 Å, C–H_{tert.} 0.93 Å). The isotropic displacement parameters were constrained to 1.2 (for non methyl) and 1.5 (for methyl groups) times

Figure 1

View of (I), showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 30% probability level. Minor disorder components of the C atoms and all H atoms have been omitted for clarity.

 $U_{\rm eq}$ of the carrier C atom. The crystal studied is racemically twinned, in a 0.394 (14):0.606 (14) ratio. Disorder was resolved for one butyl group so that C22 and C23 were each refined over two sites with occupancy factors of 0.6:0.4 and were fixed at this ratio in the last refinement cycle.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2000); software used to prepare material for publication: *SHELXL*97.

References

Brandenburg, K. (2000). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Considine, W. J., Ventura, J. J., Gibbons, A. J. & Ross, A. (1963). *Can. J. Chem.* **41**, 1239–1243.

- Davies, A. G. (2004). J. Chem. Res. 5, 309-314.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kolb, U., Beuter, M. & Dräger, M. (1994). Inorg. Chem. 33, 4522-4530.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.